- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Tie, Monique (2)
-
Baumbach, Ryan (1)
-
Chen, Yinan (1)
-
Cleron, Jamie L (1)
-
Colford, Sean (1)
-
Deshmukh, Arundhati P (1)
-
Dhirani, Al-Amin (1)
-
Filip, Marina R (1)
-
Heinz, Tony F (1)
-
Karunadasa, Hemamala I (1)
-
Niewczas, Marek (1)
-
Wen, Jiajia (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Single-crystal layered perovskite heterostructures provide a scalable platform for potentially realizing emergent properties recently seen in mechanically stacked monolayers. We report two new layered perovskite heterostructures M2(PbCl2)(AMCHC)2(PbCl4)·2H2O (1_M where M = Na+, Li+; AMCHC = +NH3CH2C6H10COO‒) crystallizing in the chiral, polar space group C2. The heterostructures exhibit alternating layers of a lead-chloride perovskite and an intergrowth comprising corner-sharing PbCl4(η2-COO)2 polyhedra with bridging equatorial chlorides and terminal axial oxygen ligands. Small alkali metal cations and water molecules occupy the cavities between the polyhedra in the intergrowth layer. The heterostructures display wide bandgaps and two closely spaced excitonic features in their optical spectra and strong second harmonic generation. The calculated band structure of 1_Na features a Type-I quantum-well structure, where the electron-hole correlation function corresponding to the lowest excited state points to electron-hole pairs localized within a single inorganic layer (intralayer excitons), as seen in typical layered halide perovskites. In contrast, calculations show that 1_Li adopts a Type II quantum-well structure, with electrons and holes in the lowest-excited state residing in different inorganic layers (interlayer excitons). Calculations on model complexes suggest that these changes in band alignment, between Type-I and Type-II quantum-well structures, are driven by the placement of the alkali metal and the orientation of the water molecules changing the electrostatic potential-energy profiles of the heterostructures. Thus, this study sets the stage for accessing different alignments of the perovskite and intergrowth bands in bulk perovskite heterostructures that self-assemble in solution.more » « lessFree, publicly-accessible full text available November 5, 2026
-
Tie, Monique; Colford, Sean; Niewczas, Marek; Baumbach, Ryan; Dhirani, Al-Amin (, Nano Letters)Delocalized−localized electron interactions are central to strongly correlated electron phenomena. Here, we study the Kondo effect, a prototypical strongly correlated phenomena, in a tunable fashion using gold nanostructures (nanoparticle, NP, and nanoshell, NS) + molecule cross-linkers (butanedithiol, BDT). NP films exhibit hallmark signatures of the Kondo effect, including (1) a log temperature resistance upturn as temperature decreases in a metallic regime, and (2) zero-bias conductance peaks (ZBCPs) that are well fit by a Frota function near a percolation insulator transition, previously used to model Kondo peaks observed using tunnel junctions. Remarkably, NP + NS films exhibit ZBCPs that persist to >220 K, i.e., >10-fold higher than that in NP films. Magnetic measurements reveal that moments in NP powders align, and in NS powders, they antialign at low temperatures. Based on these observations, we propose a mechanism in which varying such material nanobuilding blocks can modify electron−electron interactions to such a large degree.more » « less
An official website of the United States government
